Anti-aging in Men's Health

特集編集 堀江 重郎
（順天堂大学 泌尿器外科学）

総論：男性の健康支援Men’s Health
堀江 重郎
（順天堂大学 泌尿器外科学）

テストステロンと脳のアンチエイジング
川戸 佳
（順天堂大学 泌尿器外科学）

血管のアンチエイジング
田中 君枝・佐田 政隆
（東京大学保健・健康推進本部／德島大学 循環器内科学）

前立腺のアンチエイジング
井手 久満
（帝京大学 泌尿器科学）

精巣の加齢現象
小川 毅彦
（横浜市立大学（生命医科学）

ニューサイエンス社
テストステロン(T)の脳の記憶への作用が最近注目されてきた。受容体であるAndrogen Receptor (AR)は記憶中枢の海馬のグルタミン酸神経に発現している。このことから、加齢に伴うTの減少は海馬の記憶能力の低下の主な原因になることが示唆される。一方、エスピード系の神経栄養因子は老化しても海馬では減少しないことがわかってきており、Tの変動が海馬の記憶力低下と維持作用の主役となっているのではないか。ラットを用いたTの神経シナプス作用を中心に現状を説明する。

記憶に関する研究では、女性ホルモン(エストラジオール)の作用の方が注目を浴びてきた。女性ホルモン補充が更年期過ぎの女性の記憶力低下の回復などに効いて、アンチエイジング効果がある。これは、世界で1,000万人もの対象者に治療して、良好が得られたので、このような患者を対象にした研究が進められている。「Estrogen and Cognition」という題名をつけた特別号が有名なジャーナルから2000年以降15年間のあいだに数々出版されている。この初期のころ、E2による脳神経の保護作用が中心であった。ところが2010年以降は記憶中枢の海馬内E2による神経シナプスのモジュレーション作用で記憶が改善するということが確立して来た。このモジュレーション作用は1日程度かかる慢性作用の他に、1時間程度の早作用が注目されている。このようなE2の神経作用はメスタットの海馬だけでなくオスの海馬でも同じくらい研究されている。オスでは海馬内E2がE2に変換されて作用する、という解釈が主流なので、E2作用が研究されているわけである。

突然、オスなら男性ホルモン(Tの加数)DHT(ジヒドロテストステロン)がその効果をもおかないはずであり、最近、男性ホルモンTやDHTの直接作用の研究も増えてきた。米国ではアンチエイジングとしてT補充を行っている人が500万人にもいるらしいので、その作用の分子機構の解明は大変重要である。

■海馬での神経シナプスへの作用

海馬が死んだCA1領域のグルタミン酸神経のシナプスの生化学的な変化を注目し、共焦点顕微鏡で3次元可視化して調べ可能な方法を用い、T、DHTやE2を2時間作用させると、この3種類はすべてが神経シナプス後部(＝スパイラル)の密度を増加させることがわかった(図1)。男性ホルモン受
容体（Androgen Receptor, AR）
は、記憶中権の海馬のグルタミン酸神経のうち、空間記憶を司るCA1領域に特に多く発現をしている（図2）。このスパイン増加作用を引き起こす信号系は、「シナプスに存在するARやERα（女性ホルモン受容体）→ 下流の蛋白キナーゼ（LIM kinase, MAPK, PKA, PKC）→ アクチン
制御蛋白（cofilin, cortactin）のリ
ン酸化→アクチン重合→スパインが
増加」である（図3）7。これ
までE2（T→E2を含む）がス
パインなどの神経回路を変化させるためには24時間くらいの長
い時間を必要として、「核内受容体
→遺伝子転写→蛋白合成→シナプス・スパイン増
加」という経路が主体と考えられてきたが、
我々の発見した非常に早いシナプス変動は2時間程
度で効果を発揮する、新しい仕組みである（図3）。
AR, ERα, ERβなどは、もともと核に移行する核内
受容体だが、我々はこれらの核（核に移行すること
なく）神経スパイン内に存在して働くことを見出し
たことになる7, 8, 9。

T, DHT の作用の研究では、良く知られている
ARを介する作用の他に、同定されていないnonAR
を介した作用があるという報告も結構多くある
（Yale Univ.のLeranth groupなど）10。これはT,
DHTを海馬スライスに作用させると、シナプスを
形成しているスパイン（スパイン・シナプスと呼
ぶ）のみを電子顕微鏡により観測すると、これ
が増加する。これは我々が共焦点顕微鏡で観測して
いるスパイン（シナプスを形成していないスパイン
とシナプスを形成しているスパインの合計）と
は異なるので注意が必要である。しかしこのスパ
イン・シナプスには奇妙な性質があって、AR阻害
剤のフルタミドを加えてもT, DHTの作用を止まらず、
更にフルタミドだけを加えた場合にも、スパ

![image](https://example.com/image1.png)

図1. DHT, E2の作用によるスパイン増加と頭部直径の変化。海馬スライ
スに1 nMのE2, 10 nMのDHTとTを作用させると、2時間でグルタミン酸神
経の全スパイン密度はいずれも1.2-1.4倍に増加する。頭部直径の分布を調
べるとE2 < T < DHT の順で頭部直径が大きいという差が見出せる。頭部直
径は0.3 - 0.8 μmと微小である。オラクラッドを使用。

単一神経には樹状突起が50本程度あり、左図で多い棒状の樹状突起に存
在する小さな膜（スパイン）が1 μm当たり1個、単一神経全体では10万
程度もある。神経の記憶は、シナプスという、関り合う神経の接合部に貯
蔵される、スパインはそのシナプス後部のものである。これらの結果か
ら推測すると、前立腺肥大症の治療薬や、もはや薬として使用されるフィナス
テリッドは海馬に入るとT→DHT変換を止めるので、記憶に悪影響を及ぼす
かもしれない。

![image](https://example.com/image2.png)

図2. 海馬のグルタミン酸神経CA1領域に男性ホルモ
ン受容体ARが強く発現している。CA3, DG領域の発
現は弱い。抗体組織染色の結果（細野2009, 東大修士論
文）。ARは細胞体や核に分布。Scaleは海馬スライスの
左右直径約3mm。細胞色では、神経細胞は小さ
くて見えてないが、電子顕微鏡で分解能をあげると
ARは神経細胞には含まれないことが示されている。

インシナプスが増加する10。このような場合は
nonARを介した信号系が働いていると説明してい
るが、10年以上も受容体が同定されないという弱
点がある。

■ 海馬での性ホルモンの合成と。

血中から流入する性ホルモン

我々は主に、脳が合成して脳内で働くTやE2

6 (104)

Medical Science Digest Vol 42 (3), 2016
海馬中には、コレステロール→ブレグネロノン→DHEA or プロゲステロン→T→DHT、あるいはT→E2という、雌と卵巣を合わせたような合成経路が神経で見出された。詳しいことは、海馬にスライスを用いて抗体染色で、シトクロムP450の、P450(17α)、P450 aromが、グルタミン酸神経に局在してい、神経シナプスにも発現していたということだが、記念館の観客か

提調されている。

海馬中には、コレステロール→ブレグネロノン→DHEA or プロゲステロン→T→DHT、あるいはT→E2という、雌と卵巣を合わせたような合成経路が神経で見出された。詳しくいうと、海馬スライスを用いて抗体染色で、シトクロムP450の、P450(17α)、P450 aromが、グルタミン酸神経に局在してい、神経シナプスにも発現していたということだが、記念館の観客か

提調されている。

海馬中には、コレステロール→ブレグネロノン→DHEA or プロゲステロン→T→DHT、あるいはT→E2という、雌と卵巣を合わせたような合成経路が神経で見出された。詳しくいうと、海馬スライ

スライスを用いて抗体染色で、シトクロムP450の、P450(17α)、P450 aromが、グルタミン酸神経に局在してい、神経シナプスにも発現していたということだが、記念館の観客か

提調されている。

海馬中には、コレステロール→ブレグネロノン→DHEA or プロゲステロン→T→DHT、あるいはT→E2という、雌と卵巣を合わせたような合成経路が神経で見出された。詳しくいうと、海馬スライ

スライスを用いて抗体染色で、シトクロムP450の、P450(17α)、P450 aromが、グルタミン酸神経に局在してい、神経シナプスにも発現していたということだが、記念館の観客か

提調されている。

どうしてこのような合成経路が神経で見出されるようになったと詳細は不明であるが、雌と卵巣を合わせたような合成経路が神経で見出された。詳しくいうと、海馬スライスを用いて抗体染色で、シトクロムP450の、P450(17α)、P450 aromが、グルタミン酸神経に局在してい、神経シナプスにも発現していたということだが、記念館の観客か

提調されている。
神経細胞膜に存在するmegalin というSHBG受容体により、神経細胞内にエンドサイトシスで取り込まれる。その後、細胞内リソームでSHBGから離脱しFree TとなりDHTにも変換されて作用する。SHBGに結合したT（Tの70%を占める）は不活性なTだからという信念が現在でも学会の大勢のようだが、私はmegalinによる取り込みを考えると、実はSHBGに結合して運ばれるTの方が活性型Tの主力だと思っている。

老により変化

ラットでは老化により海馬内のDHTやE2濃度は大きく減少することがわたった。血中ではTやE2濃度の老化による低下は、わからていたが、海馬内での測定は難しくて出来ていなかった。この性ホルモンの海馬での減少は記憶能力の低下に一役置いているはずである。しかし、海馬内には、良好知られた神経栄養因子が複数あり、脳出来性神経栄養因子（Brain Derived Neurotrophic Factor, BDNF）、神経成長因子（Neurogrowth Factor, NGF）などがある。神経科学的には、これらが神経シナプス状態神経回路を維持している主役だと思われている。驚いたことにBDNFやNGFは海馬の老化によって全く減少しない。従って、強力な神経栄養因子であるTやE2の低下が海馬記憶力の老化の主な原因だと言って良いのではないか。

ここでよく調べてみると、24ヶ月の老齢ラットの脳でもT、DHT、E2の合成酵素量の量は若くもの70-80%程度にしか低下しない。一方、精薬ではこれ等の合成酵素量が激減してしまうのと比べると、海馬が頑張れば、記憶力はかなり維持できるのでのいか。

最近、ラットに適度な運動を2週間させると、海馬のDHTが増加して→受容体ARを介して神経新生が促進されることが見出された。精薬を摘出したラットでも運動で同じ効果がある。これはホルモン補充をしなくても、運動すれば記憶力が良くなることを意味している。

過去に脳の老化研究では、海馬よりも更年期現象に関する視床下部下垂体一性腺軸を介した研究が中心であった。視床下部では脳血液障が慢性いため、血液中の性ホルモンを影響をもとく受け、老化では雄性のTが低下するが、これに抵抗するように視床下部はARが増加した。ところが海馬・大脳皮質では老化でARの発現は低下する。

一方、ヒトの老化においてはT濃度の問題は複雑である。なぜなら老化によってヒト血中のかTが減少する（米国）と減少しない（日本）と見解が対立しているからである。Free Tに関しては米国も日本も低下するが、Free TはTの2%程度であり実際の影響は少ないと思われる。

さてヒトでは脳の男性ホルモンだけで何が出来るのだろ汚？→答えは中国や東ローマ帝国にいた宦官が示しているのではないか。草史を書いた司馬遷、誠を発明した管仲、大航海を成功させた鄭和、東ローマ帝国では高官に宦官がいた。宦官は、精薬の男性ホルモンが無くとも、脳の男性ホルモンが発揮する知力で農業を成功させ政治を動かさせたわけではない。

以上の短縮を深く理解したい方は用戸研のhome page http://kawato-glia.sakura.ne.jp/にある論文や記事を読んでいただくともっとよくわかる。

文献