Nanomolar dose of bisphenol A rapidly modulates spinogenesis in adult hippocampal neurons

Nobuaki Tanabe¹,1, Hinako Yoshino¹,1, Tetsuya Kimoto¹,c, Yasushi Hojo¹,c,d, Mari Ogiue-Ikedaa,b, Yasuyuki Shimohigashie, Suguru Kawatoo,b,c,d,*

¹Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
²National MEXT Project in Special Coordination Funds for Promoting Science and Technology, The University of Tokyo, Japan
³Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Japan
⁴Bioinformatics Project, Japan Science and Technology Agency, The University of Tokyo, Japan
⁵Department of Chemistry, Faculty and Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Higashi, Fukuoka 812, Japan

A R T I C L E I N F O

Article history:
Received 6 July 2011
Accepted 9 January 2012
Available online 16 January 2012

Keywords:
Bisphenol A
Endocrine disruptor
ERR
Hippocampus
Spine
Estradiol

A B S T R A C T

We demonstrated the rapid effects of 10 nM bisphenol A (BPA) on the spinogenesis of adult rat hippocampal slices. The density of spines was analyzed by imaging Lucifer Yellow-injected CA1 neurons in slices. Not only the total spine density but also the head diameter distribution of spine was quantitatively analyzed. Spinogenesis was significantly enhanced by BPA within 2 h. In particular, the density of middle-head spine (with head diameter of 0.4–0.5 μm) was significantly increased.

Hydroxytamoxifen, an antagonist of both estrogen-related receptor gamma (ERRγ) and estrogen receptors (ERα/ERβ), blocked the BPA-induced enhancement of the spine density. However, ICI 182,780, an antagonist of ERα/ERβ, did not suppress the BPA effects. Therefore, ERRγ is deduced to be a high affinity receptor of BPA, responsible for modulation of spinogenesis. The BPA-induced enhancement of spinogenesis was also suppressed by MAP kinase inhibitor, PD98059, and the blocker of NMDA receptors, MK-801. Washout of BPA for additional 2 h after 2 h BPA treatment abolished the BPA-induced enhancement of spinogenesis, suggesting that the BPA effect was reversible. ERRγ was localized at synapses as well as cell bodies of principal neurons. ERRγ at synapses may contribute to the observed rapid effect. The level of BPA in the hippocampal slices was determined by mass-spectrometric analysis.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Low dose exposure to bisphenol A (BPA) may induce hormone-like effects on wildlife and humans. BPA is a widely used synthetic material included in polycarbonate resin used in water pipe sealant, dental prostheses, compact discs and baby bottles. Toxic effects of high dose BPA (mg/kg weight/day) have been investigated in relation to the development and functions of the reproduction systems (Fisher et al., 1999; Al-Hiyasat et al., 2002; Grote et al., 2004; Halldin et al., 2005). However, the low dose exposure to BPA (μg/kg/day or nanomolar doses) shows rather weak toxic effects on reproductive or endocrine functions in the peripheral tissues, probably due to the efficient detoxification of BPA by the liver. On the other hand, low dose exposure to BPA may significantly affect the brain function, because the detoxification of BPA in the brain is probably very weak, due to the extremely low expression of drug-metabolizing enzymes in the brain (Miksys and Tyndale, 2002; Kishimoto et al., 2004; Chinta et al., 2005).

The low dose exposure to BPA during fetal/neonatal stages has been extensively investigated. For example, fetal or neonatal exposure to BPA inhibits sexual differentiation of nonreproductive behaviors of adult animals, including maze learning behavior (Carr et al., 2003; Kubo et al., 2003; Fujimoto et al., 2006), at doses as low as 1/1000 of those required for the stimulation of uterine growth (Ashby, 2001). On the other hand, inadequate information is available for the low dose exposure to BPA in the adult stage, except some pioneer works in vivo (Maclusky et al., 2005; Leranth et al., 2008; Hajszan and Leranth, 2010).

The high affinity functional receptor for BPA has not been identified yet. Although ERα is one candidate of BPA receptor, the...
affinity of ERz for BPA is very low, in the order of 1/100–1/1000 of that for 17β-estradiol (E2) (Kuiper et al., 1997; Morohoshi et al., 2005). On the other hand, estrogen–receptor gamma receptor (ERRγ) is a high affinity binding protein for BPA (Takayanagi et al., 2006). However, ERRγ has not been recognized as a BPA receptor, because ERRγ shows constitutive transcriptional activity even without any ligand (Coward et al., 2001).

We here performed the investigation on the rapid modulation by nanomolar doses of BPA on the density and morphology of dendritic spines in the adult hippocampal slices, including investigations of BPA receptors. In order to observe the direct effects of BPA on hippocampal neurons, we used isolated ‘acute’ hippocampal slices which do not have projections of cholinergic or serotonergic neurons from outside of the hippocampus.

2. Materials and methods

2.1. Chemicals

BPA, 6-cyano-7-nitroquinoline-2,3-dione (CNQX), cycloheximide, nicardipine, N-methyl-d-aspartate (NMDA), PD98059, ICI 182,780 (ICI), MK-801 and Lucifer Yellow were purchased from Sigma (USA). 4-hydroxy-tamoxifen (OH-Tam) was from Calbiochem (Germany). Other chemicals used were of highest purity commercially available. Polyclonal anti-ERRγ antibody (against C-terminal of ligand binding site) was prepared by Dr. Shimohigashi at Kyushu Univ. (Tokunaga et al., 2006).

2.2. Animals

Adult male Wistar rats (12 weeks old, 340–360 g) were purchased from Saitama Experimental Animal Supply (Saitama, Japan). The experimental procedure of this research was approved by the Committee for Animal Research of the University of Tokyo.

2.3. Preparation of ‘acute’ hippocampal slices

Rats were deeply anesthetized with ethyl ether and decapitated. The brains from adult rats were removed and placed at 4 °C in artificial cerebrospinal fluid (ACSF) consisted of (mM): 124 NaCl, 5.0 KCl, 1.25 NaH2PO4, 2.0 MgSO4, 2.0 CaCl2, 22 NaHCO3, 10 glucose and was equilibrated with 95% O2/5% CO2. The hippocampus was dissected and 300 μm-thick transverse dorsal ‘fresh’ slices to the long axis were prepared with a vibratome (Dosaka EM, Kyoto, Japan). ‘Acute’ slices were prepared from these ‘freshly prepared’ slices by 2 h recovery incubation at 25 °C in ACSF.

2.4. Imaging and analysis of spinogenesis

Experimental details are described in elsewhere (Mukai et al., 2007).

2.4.1. Current injection of Lucifer Yellow

‘Acute’ slices were further incubated with BPA in the presence or absence of other drugs such as OH-Tam or PD98059. Drug-treated slices were then prefixed with 4% paraformaldehyde in PBS (0.1 M phosphate buffer and 0.14 M NaCl, pH 7.3) at 4 °C for 2–4 h. Neurons within slices were visualized by an injection of Lucifer Yellow under a Nikon E600FN microscope (Japan) equipped with a C2400–79H infrared camera (Hamamatsu Photonics, Japan) and with a 40× water immersion lens (Nikon). A glass electrode was filled with 5% Lucifer Yellow, which was then injected for 15 min using Axopatch 200B (Axon Instruments, USA). Approximately five neurons within a 100–200 μm depth from the surface of a slice were injected (Duan et al., 2002). After injection, slices were fixed again with 4% paraformaldehyde at 4 °C overnight.

2.4.2. Confocal laser microscopy and morphological analysis

The imaging was performed from sequential z-series scans with LSM5 PASCAL confocal microscope (Zeiss, Germany). For analysis of spines, three-dimensional images were constructed from approximately 40 sequential z-series sections of neurons scanned every 0.45 μm with a 63× water immersion lens, NA 1.2 (Zeiss). For Lucifer Yellow, the excitation and emission wavelengths were 488 nm and 515 nm, respectively. The applied zoom factor (3.0) yielded 23 pixels per 1 μm. The z-axis resolution was approximately 0.71 μm. The confocal lateral resolution was approximately 0.26 μm. Confocal images were then deconvoluted using AUTODE-BlUR software (AutoQuant, USA). The density of spine as well as the head diameter was analyzed with Spiso-3D (automated software mathematically calculating geometrical parameters of spines) developed by Bioinformatics Project of Kawato’s group (Mukai et al., 2011). Results obtained by Spiso-3D are almost identical to those by Neurolucida (manual-based analysis software) (MicroBrightfield, USA) within assessment difference of 2%, and Spiso-3D considerably reduces human errors and experimental labor of manual software. We analyzed the secondary dendrites in the stratum radiatum, lying between 100 and 250 μm from the soma. The spine density was calculated from the number of spines on dendrites having a total length of 50–80 μm. In total, we investigated 3–4 rats, 6–8 slices, 12–16 neurons, 24–32 dendrites and 1200–2000 spines. Spine shapes were classified into three categories as follows. (1) A small-head spine whose head diameter is 0.2–0.4 μm. (2) A middle-head spine whose head diameter is 0.4–0.5 μm. (3) A large-head spine whose head diameter is 0.5–1.0 μm. These three categories were useful to distinguish different responses upon inhibitor application. Because the majority of spines (>95%) had a distinct head and neck, and stubby type and filopodium type spines did not contribute much to overall changes, we analyzed spines having a distinct head.

All protrusions from the dendrites were treated as ‘spines’, although with confocal microscopy, it was not possible to determine whether they formed synapses, or whether some of them were filopodia protrusions which did not form synapses (Sorra and Harris, 2000). While counting the spines in the reconstructed images, the position and verification of spines were aided by rotation of three-dimensional reconstructions and by observation of the images in consecutive single planes.

2.5. Immunohistochemical staining of hippocampal slices

Immunohistochemical staining of hippocampal slices was performed as described in elsewhere (Kimoto et al., 2001; Kawato et al., 2002) and Supplementary material. Staining of ERRγ was performed using the avidin–biotin peroxidase complex technique. After application of anti-ERRγ antibody (1/250), the slices were incubated for 24 h at 4 °C, in the presence of 0.5% Triton X-100 and 3% skim milk with gentle shaking.

For preabsorption of anti-ERRγ antibody with antigen, excess amount of antigen was preincubated with anti-ERRγ antibody for 15 h at 4 °C. Characterization of anti-ERRγ antibody is described in Supplementary material with Fig. S1.

2.6. Preparation of synaptic, cytoplasmic and nuclear fractions

Fractionation of the homogenates obtained from hippocampal slices was performed by a combination of centrifugations at 4 °C (Cohen et al., 1977). Detailed procedures to obtain the raft fraction, nuclear fraction, postsynaptic density (PSD) fraction, low density membrane fraction (presynaptic membrane-enriched fraction),
high density membrane fraction (microsome and postsynaptic membrane-enriched fraction), and the cytoplasmic fraction are described in elsewhere (Mukai et al., 2007) and Supplementary material.

2.7. Western immunoblot analysis

The protein blots were probed with anti-ERRγ antibody (diluted to 1/3000) for 12 h at 4 °C, and incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG. Detailed procedures are described in Supplementary material.

2.8. Mass-spectrometric assay of BPA

Experimental details are described in elsewhere (Hojo et al., 2009) and Supplementary material. The extraction of steroids from hippocampal slices was performed by hexane: ethylacetate = 2:3 mixtures. The steroid extracts were applied to a C18 Amprep solid phase column (Amersham Biosciences, Piscataway, NJ). The BPA fraction was separated from eluted steroids using a normal phase HPLC system (Jasco, Tokyo, Japan) with a silica gel column. The recoveries of BPA through the steps above were approx. 40%. To increase the ionization efficiency, BPA was derivatized to BPA-dipicolinoyl-ester (Hojo et al., 2009). The LC–MS/MS system, which consisted of a reverse phase LC coupled with an API 5000 triple-stage quadrupole mass spectrometer (Applied Biosystems, Foster City, CA), was operated with electron spray ionization. The LC chromatographic separation for BPA derivatives was performed on a Cadenza CD-C18 column (Imsakt, Kyoto, Japan). The MS/MS process monitored the m/z transition from 439.3 to 239.8 Deuterium labeled BPA derivative (2, 2', 6', 6'-d4-BPA-dipicolinoyl-ester) was used for internal standards in order to measure the recovery of BPA as well as to calibrate the retention time. After derivatization, purification and MS/MS detection, the recovery for BPA was determined to be approximately 70%. The limit of quantification for BPA was 5 pg per 0.1 g of hippocampal tissue (Table S1). The linearity was observed between 5 pg and 1000 pg. For more detailed procedures, see Supplementary material.

2.9. Statistical analysis

In spine analysis, data are expressed as mean ± SEM. The significance of drug effect was examined via statistical analysis using Tukey–Kramer post hoc multiple comparison test when one way ANOVA tests yielded P < 0.05.

3. Results

3.1. Rapid effect of BPA on spinogenesis

We analyzed the effect of BPA on the modulation of the density and head diameter of spines in the CA1 region. To do this, single spine imaging was performed for Lucifer Yellow-injected neurons in hippocampal slices from adult male rats. We analyzed secondary branches of the apical dendrites located 100–200 µm distant from the pyramidal cell body around the middle of the stratum radiatum of CA1 region.

3.1.1. Total spine density analysis

Following a 2 h treatment with BPA, dendrites had significantly more spines than control (Fig. 1–2). Dose dependency was also examined after 2 h incubation. Dose dependency showed that the enhancing effect was most significant at 10 nM BPA (1.55 spines/µm) as compared with 1 nM (0.95 spines/µm), 100 nM (1.40 spines/µm) and 10 µM BPA (0.92 spines/µm) (Figs. 1 and 2). Because a 2 h treatment with 10 nM BPA was most effective in spinogenesis, this incubation condition was used in the following investigations unless specified.

To investigate signaling pathway of BPA-induced increase in the total spine density, several antagonists and blockers were applied (Fig. 2).

Application of ICI, an antagonist of ERα/ERβ, did not suppress the increase in the spine density by 10 nM BPA (1.56 spines/µm). On the other hand, application of OH-Tam, an antagonist of both ERRγ and ERα/ERβ, completely suppressed the enhancement of spine density by BPA (0.94 spines/µm).

Application of MK-801, an antagonist of NMDA receptor, completely suppressed the enhancement of spine density by BPA (0.96 spines/µm). Application of CNQX, an antagonist of AMPA receptor, partially-prevented the enhancement by BPA (1.24 spines/µm). Application of nicardpine, an antagonist of L-type voltage-dependent Ca2+ channel, did not inhibit the enhancement of spine density induced by 10 nM BPA (1.48 spines/µm). When Ca2+ free ACSF was used, BPA-induced spinogenesis was completely suppressed (0.80 spines/µm). Application of PD98059, an inhibitor of Erk MAP kinase, completely prevented the BPA-induced spinogenesis (0.84 spines/µm). Washout of BPA for additional 2 h after the 2 h BPA treatment abolished the BPA-induced enhancement of spinogenesis, implying that the BPA effect was reversible. It should be noted that inhibitors (OH-Tam, ICI, PD98059) alone did not significantly affect the total spine density within experimental error, indicating that the observed inhibitory effects are not due to simple blocker’s poison effects (Fig. S2 in Supplementary material).

3.1.2. Spine head diameter analysis

The morphological changes in the spine head diameter induced by a 2 h treatment with 10 nM BPA were assessed (Fig. 3). The majority of spines (>95%) had a distinct head, therefore we statistically analyzed these spines having distinct heads. We classified the spines into three categories depending on their head diameter, i.e. small-head spines (0.2–0.4 µm), middle-head spines (0.4–0.5 µm), and large-head spines (0.5–1.0 µm). The categorization into three subclasses enabled to distinguish different responses in spine subpopulations upon application of BPA, receptor antagonist or kinase inhibitor. Small-, middle-, and large-head spines are different in the density of AMPA receptors (Shinohara et al., 2008), therefore these three types of spines may have different physiological functions. The density of AMPA receptors in the spine positively correlates with the postsynaptic density (PSD) area size.

We performed a statistical analysis using three subclasses (Fig. 3B). In control slices (0 nM BPA), the spine density was 0.14 spines/µm for small-head spines, 0.40 spines/µm for middle-head spines, and 0.45 spines/µm for large-head spines. Upon treatment with BPA, the density of middle-head spines increased significantly to 0.60 spines/µm, while the density of small-head and large-head spines was not significantly altered (Fig. 3B). The co-application of OH-Tam with BPA considerably suppressed BPA-induced increase in the density of middle-head spines to 0.35 spines/ µm (Fig. 3B). No significant change in BPA-induced increase in the density of three subclasses of spines was induced by co-application with ICI (Fig. 3B).

3.2. Staining of ERRγ

Hippocampal distribution of ERRγ was investigated by immunostaining of hippocampal slices with anti-ERRγ antibody. A strong immunostaining of pyramidal and granule neurons was observed in CA1–CA3 and DG (Fig. 4–1). No staining was observed
when anti-ERR\(_c\) antibody preabsorbed with the excess amount of antigen peptide was used as a primary antibody. Subcellular expression of ERR\(_c\) was analyzed by Western blot. A clear single band with M.W. of approx. 55 kDa was observed in PSD fraction, dendritic raft fraction and nuclear fraction of hippocampal neurons (Fig. 4–2).

3.3. Concentration of BPA in the hippocampus

Because BPA is widely present in environments, the endogenous concentration of BPA was carefully determined for adult male rat hippocampus with mass-spectrometric investigations using a chromatogram analysis of the fragmented ions (Fig. 5–1). After selection of mother ions, fragmentation and detection were performed via MS/MS procedures. Chromatographic profiles for the fragmented ions of BPA-dipicolinoyl-ester having \(m/z = 239.8\) showed a clear peak with the retention time of 5.18 min which was the same as that of the standard BPA derivative (Fig. 5–1).

The average concentration of BPA in ‘fresh’ hippocampal slices (before incubation with ACSF) was evaluated to be 14.6 ± 1.8 ng/g wet weight (i.e., 64 ± 8 nM) from 4 animals. In contrast, the BPA concentration in ‘acute’ slices, used for spinogenesis experiments, was less than 0.5 nM, due to significant release of BPA to ACSF during 2 h recovery incubation (Fig. 5–2). These results imply that the elevation of BPA from <0.5 nM to 10 nM occurred upon application of 10 nM BPA in acute slices in spinogenesis experiments.

We need to subtract blank values of BPA (0.027 ± 0.006 ng/mL) that was measured in blank samples which were prepared alongside hippocampal samples through the whole extraction, fractionation and purification procedures. These subtraction procedures are essential, because BPA was observed even in pure water (see Supplementary material).

4. Discussion

Current investigations of the rapid effects of BPA on spinogenesis in isolated hippocampal slices lead to the finding of ERR\(_\gamma\)-mediated BPA action at synapses of pyramidal neurons.
4.1. Comparison of BPA and E2 effects on spinogenesis in slices

The elevation of BPA level to 10 nM (from less than 0.5 nM in acute slices) induced a rapid increase in the density of spines. The enhancing effect on spinogenesis was not greater at higher concentrations of BPA (100 nM) than those at lower concentrations of BPA (10 nM) (Fig. 1). BPA predominantly increased the density of middle-head spines by approx. 1.5-fold (Fig. 3). The reason is not clear for this selective increase, since BPA would affect all spines. We cannot eliminate the possibility that BPA may increase small-head spines then enlarge them to middle-head spines. Although receptors are different, some similarity is observed between BPA and E2 about modulation effects on spinogenesis in adult slices. The increase of middle-head spines also occurs upon 1 nM E2 treatments for 2 h in CA1 of hippocampus (Mukai et al., 2007). The E2-induced spinogenesis is also driven by Erk MAP kinase pathway (Mukai et al., 2007). Blocking of NMDA receptors by MK-801 abolishes the enhancing effects by E2 and BPA, suggesting that both E2 and BPA signaling need a basal level of Ca\(^{2+}\) which is kept by Ca\(^{2+}\) influx into spines via NMDA receptors due to spontaneous spiking (Ishii et al., 2007; Ogiue-Ikeda et al., 2008). As another example, in organotypic hippocampal slice cultures, the pretreatment for 24 h with E2 or BPA at 10 nM exacerbates the CA3 neuronal damage caused by glutamate, due to enhanced spinogenesis by E2 or BPA (Sato et al., 2002).

4.2. ERR\(\gamma\) is a high affinity receptor for BPA

Although ERR\(\alpha\) had been assumed to be a receptor of BPA in earlier studies, the binding affinity of BPA to ERR\(\alpha\) is much lower (approx. 1/100–1/2000) than that of E2 (Kuiper et al., 1997; Morohoshi et al., 2005). Therefore, nanomolar BPA probably cannot induce significant effects on spinogenesis through ERR\(\alpha\). On the other hand, BPA tightly binds to ERR\(\gamma\) (Takayanagi et al., 2006). To identify the receptor responsible for the BPA-induced modulation of spinogenesis, we used OH-Tam, an antagonist of ERR\(\gamma\)/ERR\(\alpha\)/ERR\(\beta\) (Fitts et al., 2011), and ICI, an antagonist of ERR\(\alpha\)/ERR\(\beta\). OH-Tam completely suppressed the enhancement of spinogenesis by BPA, however, ICI did not suppress the BPA-induced enhancement of spinogenesis. Therefore, we conclude that ERR\(\gamma\) is a high affinity functional receptor for BPA. Note that E2 does not bind to ERR\(\gamma\) (Takayanagi et al., 2006).

BPA rapidly activates the transcription factor, cAMP-responsive element binding protein (CREB) in pancreatic \(\beta\)-cells (Quesada et al., 2002). Phosphorylated CREB is rapidly (~5 min) increased after application of 1 nM of BPA. The increase in phosphorylated CREB is not inhibited by ICI, implying that ERR\(\alpha\)/ERR\(\beta\) is not involved in these processes.

Until the current study, ERR\(\gamma\) has not been proven as a functional BPA receptor, although ERR\(\gamma\) is shown as a tight binding site of BPA. By means of the luciferase reporter gene assay, ERR\(\gamma\) shows constitutive transcriptional activity even without any ligand, including BPA. OH-Tam inhibits this ERR\(\gamma\) transcriptional activity by binding strongly to ERR\(\gamma\) with IC\(_{50}\) of 10.9 nM (Coward et al., 2001). BPA also binds strongly to ERR\(\gamma\) with IC\(_{50}\) of 13 nM (Takayanagi et al., 2006). BPA antagonizes the deactivation activity of OH-Tam, resulting in the recovery of the transcriptional activity of ERR\(\gamma\). In other words, OH-Tam is an inverse agonist. BPA alone, however, cannot modulate the high basal transcriptional activity of ERR\(\gamma\) (Takayanagi et al., 2006; Okada et al., 2008), preventing assignment of ERR\(\gamma\) as BPA receptor. Fortunately in the current study, we could demonstrate the function of ERR\(\gamma\) as an inducer of spinogenesis upon binding of BPA. It is, however, also possible to explain that an endogenous inverse agonist of ERR\(\gamma\) (if the inverse agonist exists) inhibits ERR\(\gamma\) in the absence of BPA, and that BPA application reverses this inhibition. This explanation assumes that synaptic ERR\(\gamma\) is also a constitutively active receptor protein, which is the case for nuclear ERR\(\gamma\).

Although ERR\(\gamma\) is highly expressed in adult rat brain (Eudy et al., 1998; Heard et al., 2000; Lorke et al., 2000), localization of ERR\(\gamma\) in the hippocampus had not been fully demonstrated. We showed that ERR\(\gamma\) is significantly expressed in pyramidal neurons and granule cells in the hippocampus as judged from immunostaining and Western blot analysis (Fig. 4). Since ERR\(\gamma\) may phosphorylate CREB, nanomolar BPA could also alter gene expression. Further investigations are important to fully clarify the ERR\(\gamma\)-driving signaling in modulation of synaptic plasticity.
4.3. In vivo effects of BPA

Electron microscopic investigations show in vivo rapid BPA effects (\(\sim 30\) min) on the spine-synapse density using ovariectomized (OVX) female adult rats (MacLusky et al., 2005). The s.c. injection of E2 (60 \(\mu\)g/kg) significantly increases/rescues the spine-synapse density in the hippocampus. Although application of BPA alone does not affect the spine-synapse density, co-application of BPA with E2 suppresses the E2-induced increase in the spine-synapse density. The rapid inhibitory effects of 0.1 nM BPA application on 0.1 nM E2-induced phosphorylation of MAP kinase are observed for cerebellar granule cells in vivo at postnatal 10 stage (Zsarnovszky et al., 2005). Interestingly, both BPA alone and E2 alone activate MAP kinase in cerebellar systems. An additional high-affinity BPA binding site is proposed in order to explain these BPA effects from these investigations. The current study implies that ERR\(_c\) can be this high-affinity BPA binding site.

These in vivo results should be explained depending on BPA and E2 actions in complex neural circuits. The anatomical neural circuits are very different between hippocampus in vivo and isolated slices. As shown in Fig. 3S, hippocampus in vivo receives complicated projections of cholinergic neurons from Medial Septum/Diagonal Band of Broca (MSDB), serotonergic neurons from Median Raphe (MR), and glutamatergic neurons from supramammillary area (SUM). In addition GABAergic projections are present. These neurons express ER\(_a\) or ER\(_b\) (Leranth et al., 2000). ERR\(_c\) is expressed in MSDB (Lorke et al., 2000), but ERR\(_c\) expression in MR region is not clear. These neurons project to GABA neurons and pyramidal neurons (PY) within the hippocampus. Therefore “BPA-induced suppressive modification of E2-induced enhanced spinogenesis” consists of complicated processes, and is difficult to explain logically at the moment. We should consider many possible signaling pathways for explanation of these in vivo events.

(Pathway 1) E2 activates cholinergic or serotonergic neurons \(\rightarrow\) activates GABA neurons \(\rightarrow\) suppresses PY. (Pathway 2) E2 activates cholinergic neurons \(\rightarrow\) activates PY. (Pathway 3) BPA suppresses E2 action within cholinergic neurons (via ERR\(_c\)) \(\rightarrow\) BPA and E2 act only in PY and GABA neurons. (Pathway 4) BPA does not
suppress E2 action in cholinergic neurons → E2 activates GABA neurons → suppresses PY. (Pathway 5) Direct BPA and E2 actions in intra-hippocampal GABA neurons. (Pathway 6) Direct BPA and E2 actions in PY. Other signaling pathways may also be present.

On the other hand, in our isolated hippocampal slices, we can focus on analysis of direct BPA effects on glutamatergic neurons and GABAergic neurons. In the current study, since ERRγ was expressed in entire PY whose population was much greater than that of GABAergic interneurons, the observed effect of BPA on hippocampal slices primarily caused by the BPA effect on PY.

It should be noted that BPA elevated the spine density of PY in isolated slices, however, BPA does not have any effect on the spine density of PY in hippocampus in vivo. These differences imply the clear difference of BPA action due to different neural circuits between slices and hippocampus in vivo.

We also should consider the difference between adult stage and developing stage. For example, in adult cerebellum, E2 only effects are localized to specific interneurons (ventrolateral portion of the soma and axon hillock of Purkinje cells), which is very different from E2 effects on entire granule cells at P10 developmental stage (Zsarnovszky et al., 2005). BPA effects in adult stage were not investigated, and therefore we do not know interactions between BPA and E2 in adult cerebellum.

Primary cultured neurons are also important to examine because of their simple structures without complicated neural circuits. In cultured hippocampal neurons, BPA rapidly increases the length of filopodia spines (Xu et al., 2010). E2 also increases the length of filopodia, however, BPA addition with E2 decreases the filopodia length to some extent.

4.4. Exposure to BPA in the human brain

Concerning endocrine organs, human BPA exposure (at μg/kg low dosage) might be insufficient to elicit significant responses, due to weak bioactivity in standard tests of estrogenicity, such as the rat uterotrophic assay (Ashby, 2001; Degen et al., 2002; EC Scientific Committee on Food, 2002; Japan Ministry of the Environment’s ExTEND 2005; US Environmental Protection Agency, 1993). However, the brain may be sensitive to low dose BPA exposure in humans or animals, for example, BPA exposure (at 50 μg/kg low dosage) over a 28 day period inhibits the E2-induced remodeling of spine synapses in the ovariectomized monkey hippocampus (Leranth et al., 2008). Possible risks of low dose exposure to BPA are warned, for example, in behavior of children (Braun et al., 2011; US National Toxicology Program, 2008; Canadian Ministry of Health and Environment, 2008). Low dosage of μg/kg BPA may induce nanomolar plasma concentration of BPA. The BPA concentrations in male human plasma and male rat plasma are approx. 1.5 ng/ml (6.5 nM) and 24.9 ng/ml (109 nM), respectively (Takeuchi and Tsutsumi, 2002; Takeuchi et al., 2004). The plasma BPA may reach the brain and be accumulated without detoxification, as judged from no significant conversion of 3H-BPA to other metabolites in hippocampal slices over 5 h (HPLC analysis, data not shown). These results are consistent with a significant level of
BPA (\(\sim 64\) nM) accumulated in the hippocampus of adult male rats (Fig. 5).

Taken together, we emphasize that even nanomolar low dosage of BPA could induce significant effects on synaptic plasticity of the hippocampus in mammals.

Acknowledgments

We thank Prof. J.A. Rose (Ritsumeikan University) and Dr. Anna Barron (Univ. of Tokyo) for critical reading of the manuscript. Drs. S. Homma and M. Okuyama (Aska Pharma Medical) are acknowledged for technical assistance of mass-spectrometric analysis.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.mce.2012.01.008.

References

Supplementary material

Methods

Chemical synthesis of ERRγ C-terminal peptides
The C-terminal peptide fragment (residues 419-435) of ERRγ (GKVPMHKLFLEMLEAKV) was synthesized (0.1 mmol scale) on an automated peptide synthesizer ABI 433A (Applied Biosystems Inc., Foster City, CA, USA) using Rink Amide MBHA resin (Novabiochem, La Jolla, CA, USA) with Fmoc synthetic strategy. The synthetic peptide was liberated from the resin by Reagent K at 25°C for 2 h. After evaporation, the residue was solidified with diethyl ether. Purification was carried out first by a gel filtration column (1.0 x 75 cm) of Sephadex G-15 (Amersham Bioscience, Piscataway, NJ, USA) eluted with 30% acetic acid. For further purification, reversed-phase high performance liquid chromatography (RP-HPLC) was performed on a preparative column (25 x 250 mm, Cica-Merck LiChrospher RP-18 (e), 5 mm) with a linear gradient of 0.1% trifluoroacetic acid and 80% acetonitrile and the fraction containing a pure peptide was pooled and lyophilized to obtain the final peptide sample.

The purity was verified by analytical RP-HPLC (4 x 250 mm, Cica-Merck LiChrospher 100 RP-18, 5 mm). Mass spectra were measured on a mass spectrometer Voyager™ DE-PRO (PreSeptive Biosystems Inc., Framingham, MA, USA) by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to confirm the chemical structure of the peptide synthesized. To prepare an antibody against ERRγ C-terminal peptide, the thiol-containing amino acid Cys was attached to the N-terminus.

Preparation of polyclonal antibody
Synthesized Cys-attached ERRγ C-terminal peptide was chemically conjugated to a carrier protein keyhole limpet hemocyanin (KLH: Sigma-Aldrich). The cross-linking coupling between peptide and protein was performed with the heterobifunctional reagent m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) (Pierce, Rockford, IL, USA), which contains N-hydroxysuccinimide ester and maleimide groups that allow covalent conjugation between the KLH amine and the PDF Cys-thiol groups. A polyclonal antibody was prepared by immunizing New Zealand
white rabbits with the KLH-conjugated ERRγ C-terminal peptide. After the final boost, blood was collected from the ear artery of rabbits for serum preparations. The serum was treated with KLH (0.5 mg/ml) overnight at 4°C, and then the mixture was centrifuged (14,000 g) for 5 min. Purification by immunoprecipitation was repeated several times, and the supernatant collected was purified by affinity chromatography on a column packed with the gel of ERRγ C-terminal peptide-linked agarose (SulfoLink® Coupling Gel, Pierce).

Characterization of polyclonal antibody
ERRγ C-terminal peptide was conjugated to a carrier protein bovine thyroglobulin G (bThG). The cross-linking coupling was carried out by MBS, as for KLH-conjugated ERRγ C-terminal peptide. To examine the anti-ERRγ C-terminal peptide (merely denoted as anti-ERRγ pAb hereafter) by ELISA, the bThG-conjugated antigen peptide solutions were incubated for 2 h at 25°C to immobilize them in the 96-well ELISA plate. HRP-conjugated anti-rabbit IgG (Jackson ImmunoResearch, West Grove, PA, USA) was used for the coloring at 405 nm on a microplate reader (Immuno-mini NJ-2300, Intermed, Tokyo). Prepared anti-ERRγ pAb was found to recognize very well the antigen peptide per se. However, this antibody did not react with the peptides derived from the C-terminal moieties of ERα and ERβ. Similar results were obtained also for ERRγ, ERα, and ERβ ligand-binding domain (LBD) proteins. Anti-ERRγ pAb reacted with ERRγ, but not with ERα and ERβ.

For the specific detection of ERRγ protein by anti-ERRγ pAb, the western blotting assay was also performed. For this identification, we tested GST-fused ERRγ-LBD together with GST-ERα-LBD and GST-ERβ-LBD. After electrophoresis, gels were electro-blotted onto Hybond-P (GE Healthcare; Chicago, IL, USA), and the blot was incubated for 2 h in the blocking solution (3% BSA-PBS with 0.1% Tween 20). After consecutive washings with PBST, the blot was further incubated for overnight in the presence of anti-ERRγ pAb. Visualization of proteins was performed by chemi-luminescence (GE Healthcare, Waukesha, WI, USA) using anti-mouse IgG horseradish peroxidase-conjugated secondary antibody. Again, anti-ERRγ pAb reacted with ERRγ, but not with ERα and ERβ (see Fig. S1).
Figure S1
Western blotting analysis of GST-fused ERRγ-LBD, ERα-LBD and ERβ-LBD. Only ERRγ derivative (approx. 55 kDa) was detected by the polyclonal antibody anti-ERRγ pAb, and no cross-reactivity was observed for both ERα and ERβ derivatives.

Figure S2
No effect of receptor antagonists and kinase inhibitor alone on the total spine density in CA1 neurons. Vertical axis shows the total number of spines per 1 μm dendritic segment. A 2 h treatment in ACSF without BPA
(0 nM BPA), with 1 μM OH-Tam (OH-Tam), with 1 μM ICI (ICI) and with 50 μM PD98059 (PD98059).

Figure S3
Neural circuits in vivo including the hippocampus. The hippocampus receives complex projections, including cholinergic neurons from medial septum and diagonal band of Broca (MSDB), serotonergic neurons from median raphe (MR), and glutamatergic neurons from supramammillary nucleus (SUM). GABAergic neurons are also included. ERα/ERβ is expressed in these neurons. Cholinergic neurons in MSDB express ERRγ. Isolated hippocampal slice has only local neural circuit.
Table S1

The intra- and inter-assay of accuracy and precision as well as the limit of quantification (LOQ) for BPA in mass-spectrometric analysis

<table>
<thead>
<tr>
<th></th>
<th>Intraassay</th>
<th>Interassay</th>
<th>LOQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy(%)</td>
<td>RSD(%)(^a)</td>
<td>Accuracy(%)</td>
</tr>
<tr>
<td>BPA</td>
<td>102.8</td>
<td>4.7</td>
<td>98.9</td>
</tr>
</tbody>
</table>

Blank samples, prepared alongside hippocampal samples through the whole extraction and purification procedures, were spiked with BPA at 1, 5, 10, 20 and 100 pg, and contents were determined by LC-MS/MS. Accuracy was expressed as a percentage of an analytical recovery rate of measured steroid content against spike amount. Results shown only for 5 pg for BPA.

\(^a\)relative standard deviation.

\(^b\)LOQ is expressed as pg/0.1 g. Because the average weight of one whole adult hippocampus (0.14 g) was close to 0.1 g, these LOQ values indicate the limit of quantification of steroids from nearly one hippocampus.